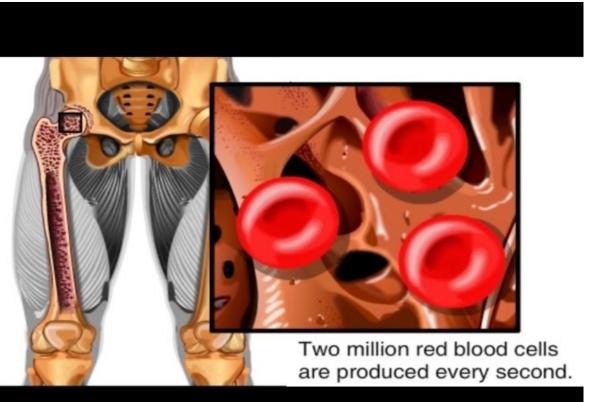


ACHILLE IOLASCON

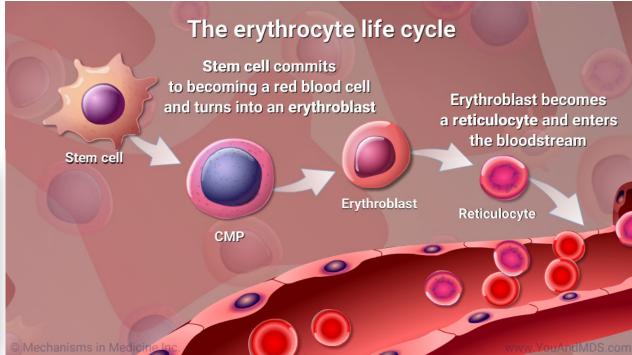

UNIVERSITA' FEDERICO II, NAPOLI &
CEINGE ADVANCED BIOTECHNOLOGY
FRANCO SALVATORE NAPOLI

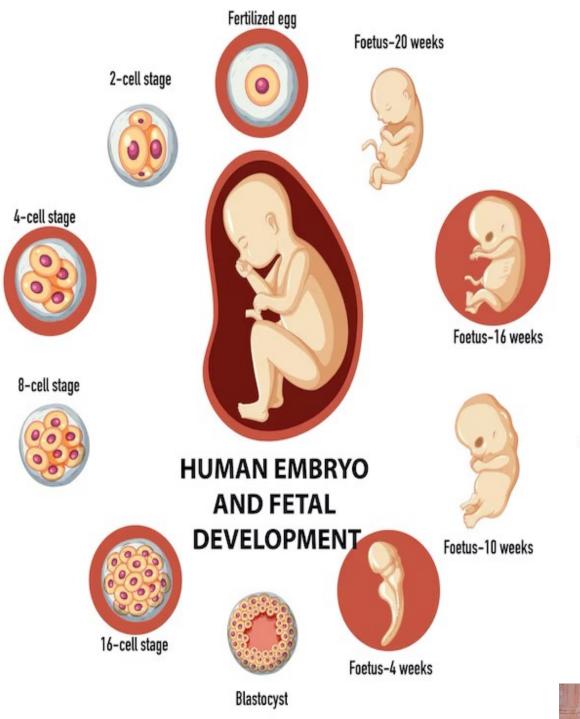




Pontificia Università Urbaniana

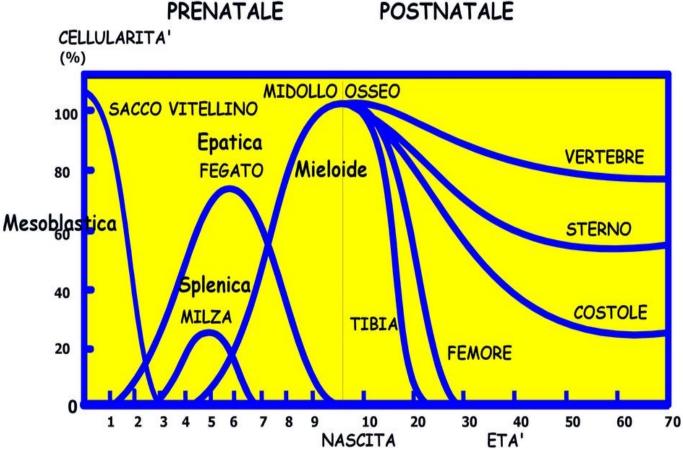
#### **Disclosures of Name Surname**

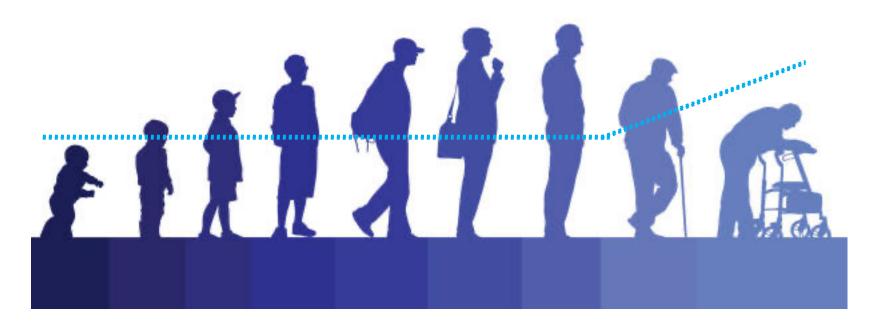


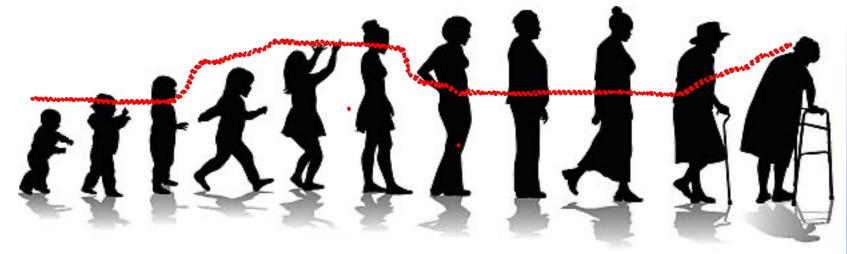

## Erythropoiesis









Nei vertebrati lo sviluppo delle cellule del sangue avviene in due fasi: una fase embrionale transitoria e una successiva fase definitiva. Queste fasi differiscono per i siti in cui gli elementi del sangue vengono prodotti, per la tipologia delle cellule prodotte e per i tempi necessari all'emopoiesi.

L'emopoiesi prenatale è, a sua volta, suddivisa in 4 fasi:



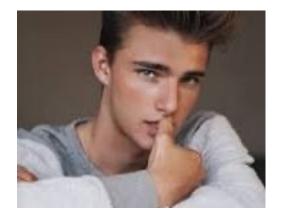








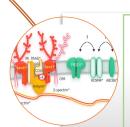





# XIV CONGRESSO N

#### Anemia in infants and children

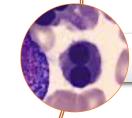
| Age<br>Disorder                          | Newborn<br>(0-30 days) | Infant<br>(0–1 year) | Toddler<br>(2-3 years) | Preschool<br>(4–5 years) | Child<br>(6–9 years) | Preteen<br>(10–12 years) | Teenager<br>(13–18 years) |
|------------------------------------------|------------------------|----------------------|------------------------|--------------------------|----------------------|--------------------------|---------------------------|
| Membrane defects                         |                        |                      |                        |                          |                      |                          |                           |
| Abnormalities of<br>metabolism           |                        |                      |                        |                          |                      |                          |                           |
| Unstable hemoglobins                     |                        |                      |                        |                          |                      |                          |                           |
| Sideroblastic anemia                     |                        |                      |                        |                          |                      |                          |                           |
| α-Thalassemia                            |                        |                      |                        |                          |                      |                          |                           |
| β-Thalassemia                            |                        |                      |                        |                          |                      |                          |                           |
| Sickle cell disease                      |                        |                      |                        |                          |                      |                          | in a                      |
| Congenital<br>dyserythropoietic anemia   |                        |                      |                        |                          |                      |                          |                           |
| Diamond blackfan anemia                  |                        |                      |                        |                          |                      |                          |                           |
| Fanconi anemia                           |                        |                      |                        |                          |                      |                          |                           |
| Hemolytic uremic syndrome                |                        |                      |                        |                          |                      |                          |                           |
| Thrombotic thrombocytopenic purpura      |                        |                      |                        |                          |                      |                          |                           |
| Disseminated intravascular coagulation   |                        |                      |                        |                          |                      |                          |                           |
| Hemorrhage                               |                        |                      |                        |                          |                      |                          |                           |
| Chronic inflammation                     |                        |                      |                        |                          |                      |                          |                           |
| Malignancies                             |                        |                      |                        |                          |                      |                          |                           |
| Neonatal alloimmune<br>hemolytic disease |                        |                      |                        |                          |                      |                          |                           |
| Primary autoimmune<br>hemolytic anemia   |                        |                      |                        |                          |                      |                          |                           |
| Secondary autoimmune<br>hemolytic anemia |                        |                      |                        |                          |                      |                          |                           |
| Aplastic anemia                          |                        |                      |                        |                          |                      |                          |                           |
| Iron deficiency                          |                        |                      |                        |                          |                      |                          |                           |
| B12 deficiency                           |                        |                      |                        |                          |                      |                          |                           |
| Folate deficiency                        |                        |                      |                        |                          |                      |                          |                           |








## Hereditary hemolytic anaemia (HHA)


HHA are a heterogeneous group of conditions characterized by premature red blood cells (RBCs) destruction and anaemia due to intrinsic RBCs defects:



**Red cell membrane defects** (hereditary spherocytosis HS, hereditary elliptocytosis HE, hereditary pyropoikilocytosis HPP, southeast Asian ovalocytosis SAO, dehydrated hereditary stomatocytosis DHS, overhydrated hereditary stomatocytosis OHS, familial pseudohyperkalemia FP, and cryohydrocytosis CHC)

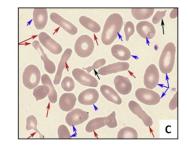


**Enzyme disorders** (the most frequent are glucose-6-phosphate dehydrogenase G6PD and pyruvate kinase PK deficiencies)



Congenital dyserythropoietic anaemias (CDAI and II)

Haemoglobinopathies (thalassemia and sickle cell disease)

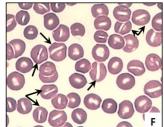

## Hereditary anemias associated with membrane defects



altered membrane structural organization

- **Hereditary Spherocytosis**
- **Hereditary Elliptocytosis**
- **Hereditary Pyropoikilocytosis**
- **South East Asian Ovalocytosis**



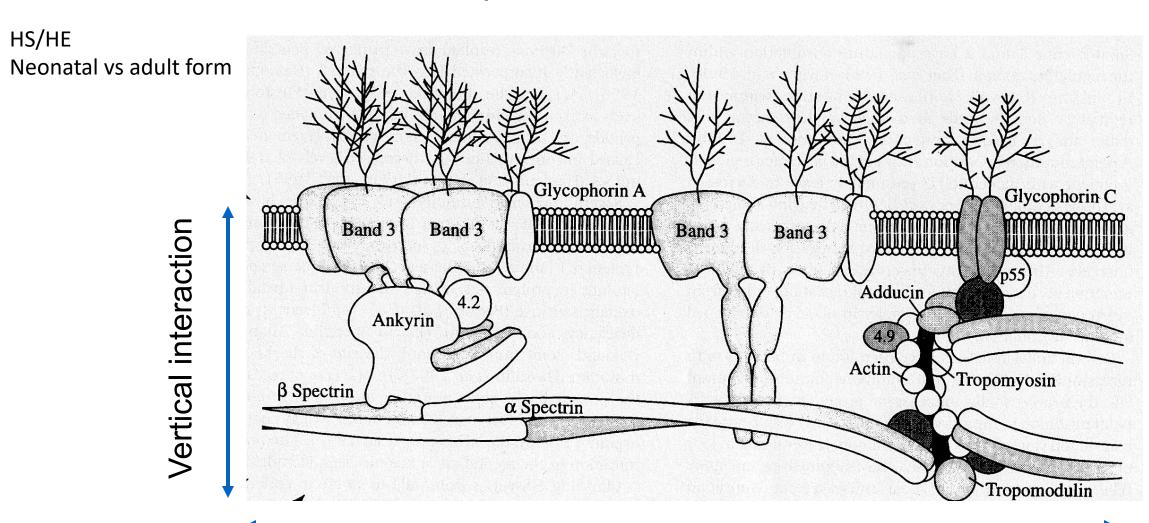





altered membrane transport function

- **Dehydrated hereditary stomatocytosis**
- **Overhydrated Hereditary Stomatocytosis**
- Familial Pseudohyperkalemia
- Cryohydrocytosis










Roma.

## Schematic representation of red cell membrane



Horizontal interaction

Micronutrients are needed in the body in tiny amounts. They do not provide energy, but are required for a number of important processes in the body.

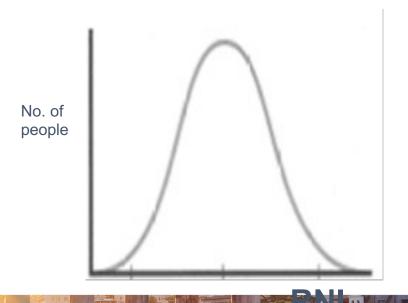
There are two main groups of micronutrients:

- vitamins;
- minerals and trace elements.

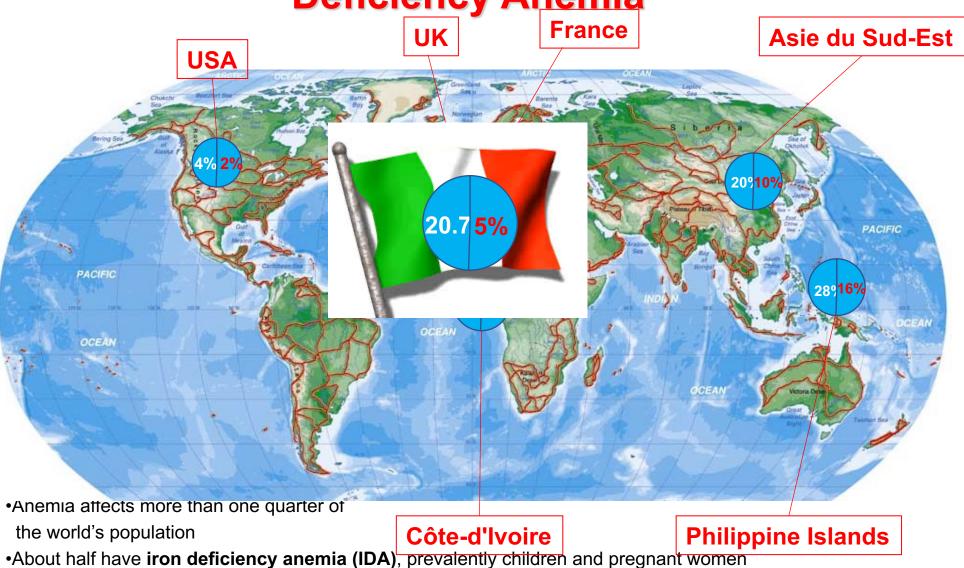
**Iron** is an example of a mineral. Minerals are inorganic substances required by the body in small amounts for a variety of different functions.

#### Iron is needed for:

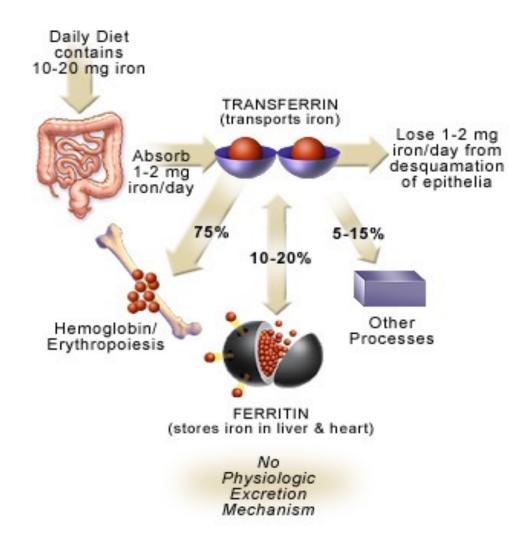
- the formation of haemoglobin in red blood cells;
- transport of oxygen in the body;
- production of energy;
- function of the immune system;
- reduction of tiredness and fatigue.




### Reference Nutrient Intakes (RNI) for Iron


The RNI is the amount of a nutrient that is enough to ensure that the needs of nearly all the population (97.5%) are being met.

The RNIs for iron shown in the table below are in mg/day.


| Age         | Males | Females |
|-------------|-------|---------|
| 1-3 years   | 6.9   | 6.9     |
| 4-6 years   | 8.1   | 8.1     |
| 7-10 years  | 8.7   | 8.7     |
| 11-14 years | 11.3  | 14.6    |
| 15-18 years | 11.3  | 14.8    |
| 19-50 years | 8.7   | 14.8    |
| 50+ years   | 8.7   | 8.7     |



Prevalence of Iron Deficiency and Iron Deficiency Anemia



#### Iron metabolism



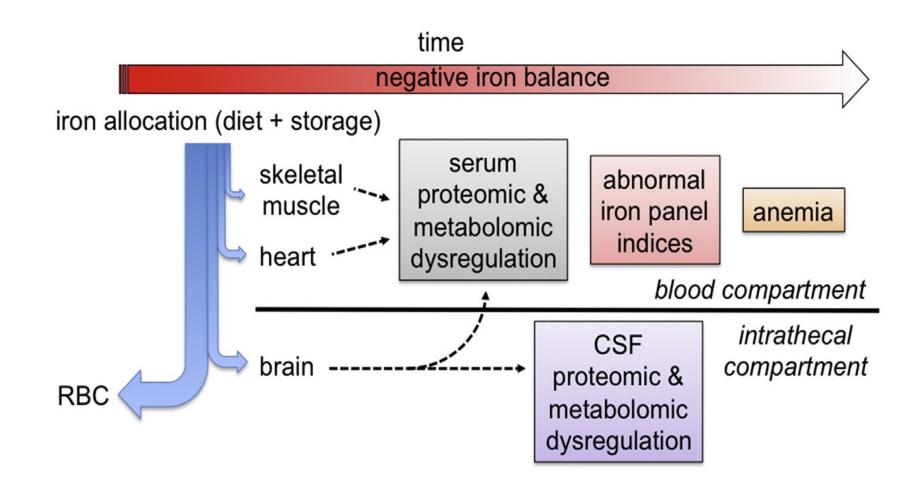
- The total body iron content of an average male adult is about 4 g;
- **Total iron:** 
  - Red cell mass as haemoglobin 65%-75%
  - Muscles as myoglobin 10%
  - Storage as ferritin 10%
    - Bone marrow
    - Reticulo-endothelial cells
    - Liver (0.5-1 g)
  - Other Haem proteins 5%
    - Cytochromes, others
  - In Serum 0.1%

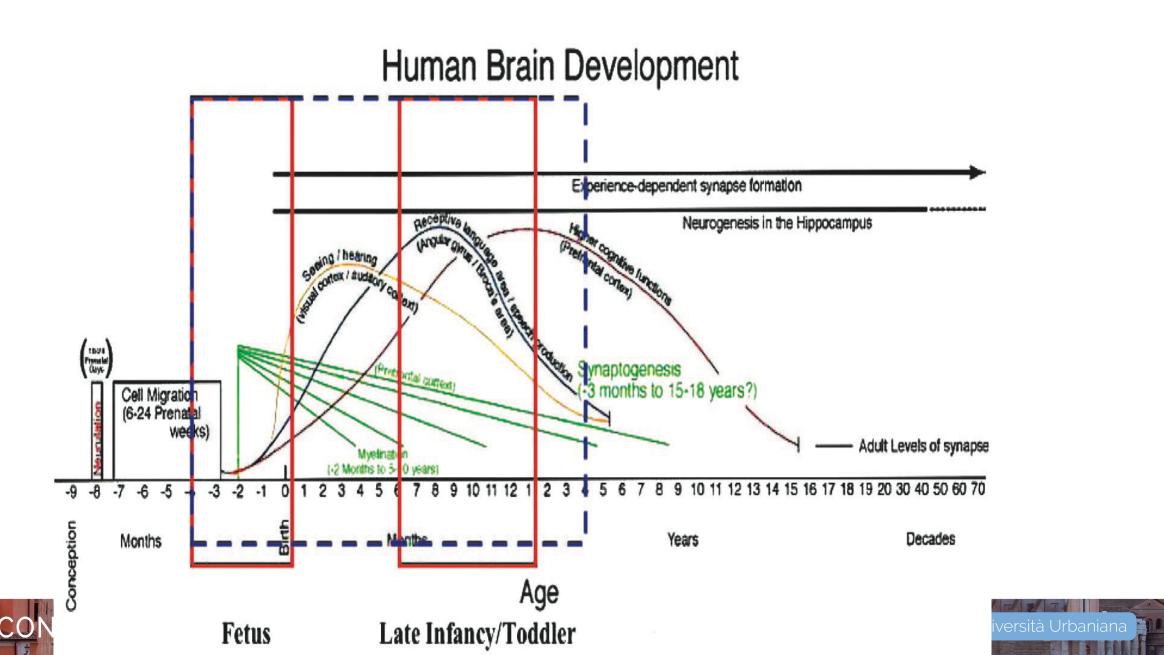
Iron balance is maintained by the meticulous regulation of iron absorption from the intestine

here is no regulated pathway for iron

## Iron content in the body in different age








1kg body weight= 50 mg Fe

|             | Newborn (3,300<br>Kg)   | Children(35 Kg)       | Adult (75 Kg)          |
|-------------|-------------------------|-----------------------|------------------------|
| Total iron  | 240-250 mg              | 1,5 – 2 g             | 3 -4 g                 |
| НВ          | 132 – 137,5 mg<br>(55%) | 1 – 1,4 g (68%)       | 2,04 – 2,72 g<br>(68%) |
| Ferritin    | 101 – 105 mg<br>(42%)   | 400 – 500 mg<br>(27%) | 0,81 -1,08 g (27%)     |
| Myoglobin   |                         | 60 – 80 mg (4%)       | 120 – 160 mg (4%)      |
| Enzyme      | 7 -7,5 mg (3%)          | 9 – 12 mg (0,6%)      | 18 – 24 mg (0,6%)      |
| Transferrin |                         | 15 – 20 mg (0,1%)     | 3 – 4 mg (0,1%)        |





# Differential diagnosis of the most common forms of microcytosis

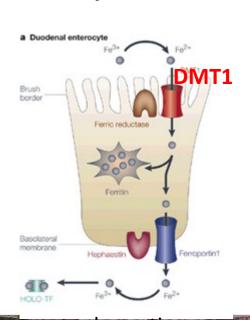
|                      | N14!4! a.u !           | Deficit of                                                   | The lease with            |                                                         | ACDimon                        |
|----------------------|------------------------|--------------------------------------------------------------|---------------------------|---------------------------------------------------------|--------------------------------|
|                      | Nutritional deficiency | Deficit of absorption                                        | Thalassemia heterozygotes | ACD                                                     | ACD+iron<br>deficiency         |
| Hb                   | -                      | -                                                            | = / -                     | -                                                       |                                |
| MCV                  | -                      | -                                                            | -                         | -                                                       | -                              |
| GR                   | -                      | -                                                            | +                         | -                                                       |                                |
| RDW                  | =                      | =                                                            | = / +                     | = / +                                                   | +                              |
| Reticulocytes        | -                      | -                                                            | = / +                     | = / +                                                   | = / + / -                      |
| IS                   | - /                    | - /                                                          | =                         | = / -                                                   | -                              |
| Ferritin             | = / -                  | = / +                                                        | =                         | =                                                       | = / -                          |
| FEP                  | = / +                  | = / +                                                        | =                         | Ш                                                       | = / +                          |
| sTfR                 | +                      | +                                                            | +                         | =                                                       | = / +                          |
| CHr                  | -                      | -                                                            | = / -                     | -                                                       |                                |
| Oral response        | YES                    | NO                                                           | NO                        | Not to be expected                                      | Partial                        |
| lv response          | YES                    | YES                                                          | NO                        | Not to be expected                                      | Partial                        |
| Inheritance          | Acquired               | Acquired /<br>multifactorial                                 | AR                        | Multifactorial                                          | Multifactorial                 |
| Suggested<br>therapy | Oral iron              | Etiological<br>therapy / iv<br>injection if<br>severe anemia | Not required              | Etiological<br>therap yif<br>possible (EPO,<br>iv iron) | Etiological therap + oral iron |

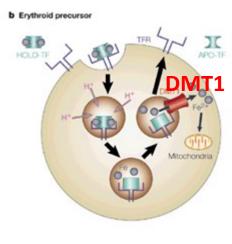
Iolascon A et al.,2013

# Differential diagnosis of the less common forms of microcytosis

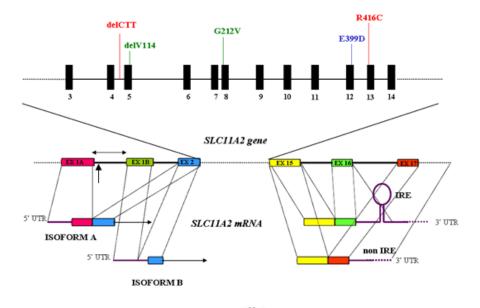
|                      | IRIDA                        | Erythropoietic protoporphyria | Sideroblastic<br>anemia X-<br>linked | Sideroblastic<br>anemia X-<br>linked with<br>ataxia | Microcytic anemia<br>sideroblastic-like<br>(GLRX5) | Deficiency<br>of DMT1 | Hypotransferri<br>nemia    | Acerulopla<br>sminemia | Deficiency<br>of Steap3 |
|----------------------|------------------------------|-------------------------------|--------------------------------------|-----------------------------------------------------|----------------------------------------------------|-----------------------|----------------------------|------------------------|-------------------------|
| Hb                   | - /                          | -                             | -                                    | -                                                   | (età<br>dipendente)                                |                       | -                          | -                      |                         |
| MCV                  |                              |                               | -                                    | -                                                   |                                                    |                       |                            | -                      | -                       |
| GR                   |                              | -                             | -                                    | -                                                   | -                                                  | -                     | -                          | -                      |                         |
| RDW                  | =                            | =                             | =                                    | =                                                   | =                                                  | =                     | =                          | =                      |                         |
| Reticulocytes        | -                            | -                             | -                                    | -                                                   | -                                                  | -                     | -                          | -                      |                         |
| SI                   | /                            | +                             | +                                    | +                                                   | +                                                  | ++                    | 100%                       | +                      | ++                      |
| Ferritin             | = / -                        | =                             | =                                    | =                                                   | =                                                  | +                     | =                          | +                      | +++                     |
| FEP                  | ++                           | +++                           | = / -                                | = / -                                               | =                                                  | +                     | =                          | =                      | +                       |
| Oral response        | NO                           | NO                            | NO                                   | NO                                                  | NO                                                 | NO                    | NO                         | YES                    | NO                      |
| lv response          | YES, not<br>long-<br>lasting | NO                            | NO                                   | NO                                                  | NO                                                 | NO                    | NO                         | YES                    | NO                      |
| Inheritance          | AR                           | AD/AR                         | X- linked                            | X- linked                                           | AR                                                 | AR                    | AR                         | AR/AD                  | AR                      |
| Suggested<br>therapy | not<br>possible              | β-carotene                    | Vit B6                               | Vit B6                                              | Iron chelation                                     | EPO                   | Plasma /<br>apotransferrin | Iron<br>chelation      | EPO, iron chelation     |

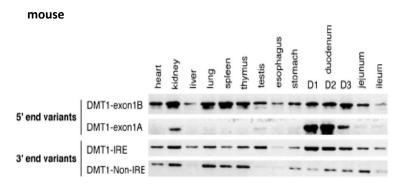
Iolascon A et al.,2013

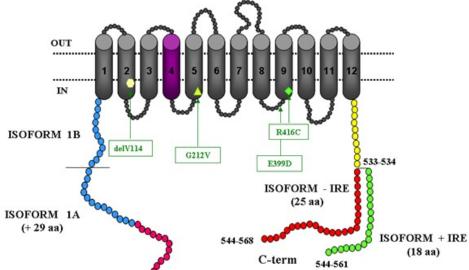

#### **Defects of iron Metabolism**


- Defective iron transport or utilization
   DMT1 deficiency, Hypo-transferrinemia
- Defects of iron absorption
   IRIDA (Iron-Refractory Iron Deficiency Anemia)
- Defects of mitochondrial iron utilization
   Inherited (and acquired) Sideroblastic Anemias
- Defects of iron recycling usually normocytic-normochromic anemias Aceruloplasmina, ACD (some cases)

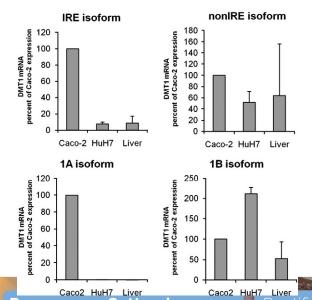
# New rare disorders of iron entry and utilization: DMT1 deficiency


DMT1: Transporter of divalent metal cations (Mn <sup>2+</sup> Cu <sup>2+</sup> Zn <sup>2+</sup> Fe <sup>2+</sup> )


Duodenal cell: luminal non heme iron transporter Erythroblasts: endosomal transferrin cycle







#### The iron transporter DMT1: 4 isoforms

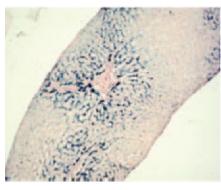


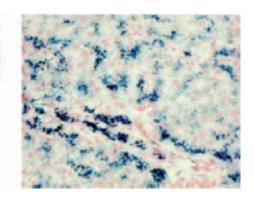




human




Roma, 11-13 Settembre 2025 Pontificia Università Urbaniana


Bardou-lacquet et al. 2011 Blood Cells Mol Dis 15:47(4):243-

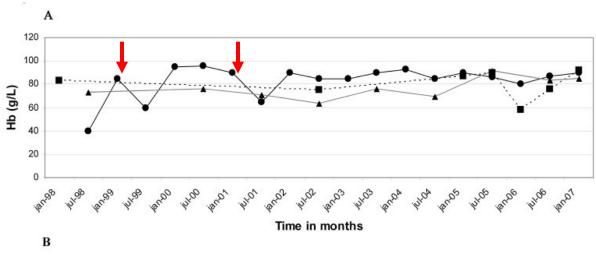
# Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in *DMT1* (*SCL11A2*)

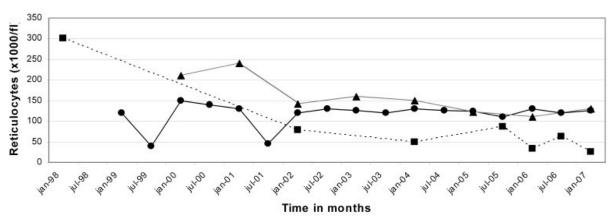
Achille Iolascon, Maria d'Apolito, Veronica Servedio, Flora Cimmino, Antonio Piga, and Clara Camaschella

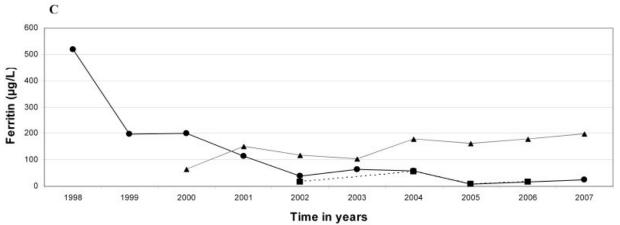
- Severe microcytic anemia with high transferrin saturation
- Severe hypochromia with liver iron overload and normal ferritin levels






|                           |             |             |             |             |             |        |         |         |         | Normal values    |
|---------------------------|-------------|-------------|-------------|-------------|-------------|--------|---------|---------|---------|------------------|
|                           | Father, I-1 | Mother, I-2 |             |             | Proband,    | ll-1   |         |         |         | (range)          |
| Age                       | 35 y        | 32 y        | Birth       | 2 mo        | 3 mo        | 6 mo   | 1 y     | Зу      | 5 y     | 2-3 y            |
| Body weight, percentile   | NA          | NA          | < 3rd       | 3rd         | 5th         | 10th   | 15th    | 15th    | 25th    | NA               |
| Hb, g/L                   | 149         | 128         | 40          | 74          | 78          | 82     | 98      | 90      | 85      | 130 (120-150)    |
| MCV, fL                   | 84          | 79.6        | 71          | 75          | 69          | 50     | 50      | 48      | 51      | 80               |
| MCH, pg                   | 28.8        | 27          | 14          | 14          | 15          | 15.3   | 14      | 13.5    | 15      | 26               |
| Serum iron, µM            | 14.3        | 12.9        | ND          | 29.7        | 28.6        | 30.4   | 26.5    | 34.7    | 36.5    | 14.3 (10.6-21.5) |
| Transferrin saturation, % | 28          | 35          | ND          | 85          | 100         | 80     | 63      | 80      | 90      | 7-30             |
| Ferritin, μg/L            | 110         | 133         | ND          | 256         | 864         | 110    | 70      | 26      | 34      | 7-140            |
| FEP, μg/g Hb              | ND          | ND          | ND          | 4.7         | ND          | ND     | ND      | ND      | 5.3     | < 3              |
| Treatment                 | None        | None        | 18 mL PRBCs | 25 mL PRBCs | 30 mL PRBCs | scrEpo | sc rEpo | sc rEpo | sc rEpo | NA               |


#### **Mutations and Clinical features of DMT1 patients**


| Patient                               | Mutation                                              | Hb at<br>birth<br>(g/L) | sTfR<br>(mg/L)                | Liver iron                                                                        | Urinary hepcidin<br>(ng/mg creatinin)          | Functional Studies of The Mutation                                                                                          |
|---------------------------------------|-------------------------------------------------------|-------------------------|-------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Czech<br>(homozygous)                 | G1285C, D399E<br>(cytosolic loop) exon 12<br>skipping | 74                      | 38 (N,1.9–<br>4.4)            | +++ (age 19y)                                                                     | 1–2 (N, 10-200)                                | Reduced stability of del exon 13 mutation; Normal targeting and function of E399D mutation                                  |
| Italian<br>(compound<br>heterozygous) | delCTT, intron 4<br>R416C, TM9                        | 40                      | 6.77 (N,<br>0.83–1.76)        | 2536 μg/g liver<br>(N, 0–400)                                                     | 98–102 (N, 45–115)                             | R416C, complete loss of<br>function (defective<br>processing and targeting, ER<br>retention, loss of transport<br>function) |
| French<br>(compound<br>heterozygous)  | delVal 114, TM2,<br>G212V, TM5                        | 83                      | 8.29 (N,<br>0.83–1.76)        | 250 +/- 50<br>µmol/g liver<br>(age 9 y); 66<br>µmol/g (after 3<br>mo epo) (N,<36) | 19–43 (on 2 separate<br>occasions) (N, 45–115) | Not studied; G212V probably conservative mutation                                                                           |
| Ecuadorian<br>(homozygous)            | G75R, TM1                                             | 51                      | 6.16 (N,<br>0.8–2.3)          | Absence of iron deposits                                                          | n.a.                                           | Not studied                                                                                                                 |
| (compound heterozygous)               | G212V, TM5 ,<br>N491S, TM11                           | 86 (13<br>years old)    | 66 nmol/L<br>(N<28<br>nmol/L) | 300 µmol/g dry<br>weight liver<br>(N,<36)                                         | n.a.                                           | G212V probably affect iron transport function, N491S loss of function resulting from disturbed protein trafficking.         |

Haematological data from 3 patients affected with DMT1 deficiency









Iolascon et al, J. Pediat. 2008

# Erythropoietin-driven signaling ameliorates the survival defect of DMT1-mutant erythroid progenitors and erythroblasts

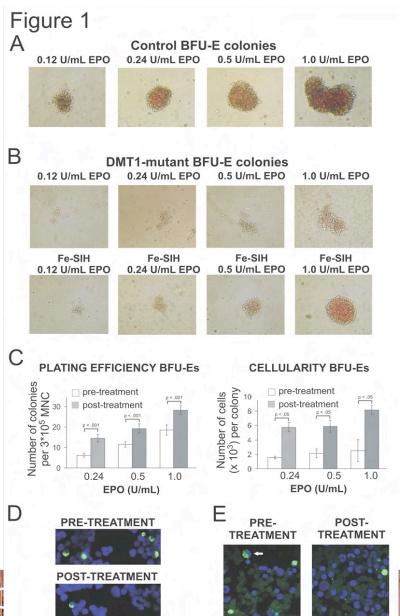
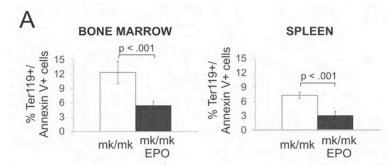
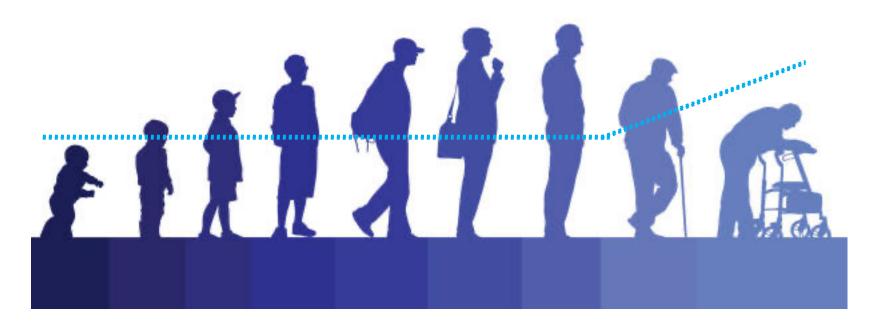
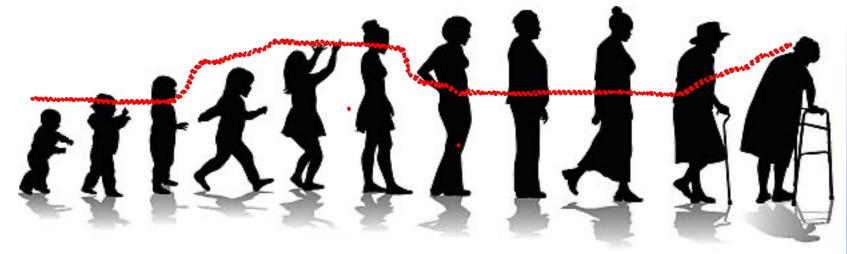




Table 1. Selected hematological values and iron status parameters in DMT1-mutant patient

| Pat                             |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                       |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-<br>treatment               | Post-<br>treatment                                                                                                                                                | Normal<br>values                                                                                                                                                                                                                                                                                                      |
| $5.0 \pm 0.4$                   | $6.1 \pm 0.6$                                                                                                                                                     | 4.0-5.4                                                                                                                                                                                                                                                                                                               |
| $7.5 \pm 0.5$                   | 9.5 ± 0.5                                                                                                                                                         | 12.0-15.6                                                                                                                                                                                                                                                                                                             |
| $29.0 \pm 1.4$                  | $33.5 \pm 0.7$                                                                                                                                                    | 36-45                                                                                                                                                                                                                                                                                                                 |
| 56.1 ± 1.0                      | $57.0 \pm 0.8$                                                                                                                                                    | 80-90                                                                                                                                                                                                                                                                                                                 |
| $15.2 \pm 0.2$                  | $15.4 \pm 0.2$                                                                                                                                                    | 27-34                                                                                                                                                                                                                                                                                                                 |
|                                 |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                       |
| 44.0 ± 1.4                      | $43.5 \pm 4.2$                                                                                                                                                    | 14.5-26.0                                                                                                                                                                                                                                                                                                             |
| $50.7 \pm 0.6$                  | $50.7 \pm 1.2$                                                                                                                                                    | 44.8-71.6                                                                                                                                                                                                                                                                                                             |
| 179 ± 26                        | 175 ± 27                                                                                                                                                          | 20-150                                                                                                                                                                                                                                                                                                                |
| 24.1 ± 10.8                     | $24.5 \pm 3.1$                                                                                                                                                    | 1.9-4.4                                                                                                                                                                                                                                                                                                               |
| See Mims et<br>al. <sup>6</sup> | 55.3                                                                                                                                                              | 126-986                                                                                                                                                                                                                                                                                                               |
|                                 | Pre-<br>treatment $5.0 \pm 0.4$ $7.5 \pm 0.5$ $29.0 \pm 1.4$ $56.1 \pm 1.0$ $15.2 \pm 0.2$ $44.0 \pm 1.4$ $50.7 \pm 0.6$ $179 \pm 26$ $24.1 \pm 10.8$ See Mims et | treatment         treatment $5.0 \pm 0.4$ $6.1 \pm 0.6$ $7.5 \pm 0.5$ $9.5 \pm 0.5$ $29.0 \pm 1.4$ $33.5 \pm 0.7$ $56.1 \pm 1.0$ $57.0 \pm 0.8$ $15.2 \pm 0.2$ $15.4 \pm 0.2$ $44.0 \pm 1.4$ $43.5 \pm 4.2$ $50.7 \pm 0.6$ $50.7 \pm 1.2$ $179 \pm 26$ $175 \pm 27$ $24.1 \pm 10.8$ $24.5 \pm 3.1$ See Mims et $55.2$ |




**Table 1.** Clinical and Laboratory Findings of *DMT1* Mutations


| Effect of intravenous Fe<br>Inheritance | No<br>Autosomal recessive |
|-----------------------------------------|---------------------------|
| Effect of oral Fe                       | No                        |
| Neonatal appearance                     | Yes                       |
| Liver iron                              | +++                       |
| FEP                                     | +                         |
| Bone marrow sideroblasts                | -                         |
| sTfR                                    | ++                        |
| Tf saturation                           | ++                        |
| Serum iron                              | ++                        |
| MCV                                     | 45-55                     |

Abbreviations: MCV, mean corpuscular volume; Tf, transferrin; sTfR, soluble transferrin receptor; FEP, free erythrocyte protoporphyrin; Fe, iron; Epo, erythropoietin.

- DMT1 is essential in erythropoiesis
- DMT1 is not essential for liver iron uptake
- DMT1 is not essential for duodenal iron absorption
  - Alternative pathways?
  - Heme absorption?
- Increased iron absorption occurs in the presence of iron overload because of <u>low hepcidin levels</u>
- Partial response of anemia to erythropoietin treatment









## Acknowledgments ...

#### Let me thank ...

#### **Prof. Roberta Russo Prof. Immacolata Andolfo**

Roberta Marra Barbara Eleni Rosato Antonella Nostroso Anthony Iscaro Mariangela Manno Valeria Pennella Gianna Gargiulo Vanessa D'Onofrio Federica Maria Esposito

#### **Internal collaborators**

Medical Genetics Unit AOU Federico II

#### **External collaborators**

Ospedali Galliera, Genova University of Verona Foundation IRCCS Ca' Granda, Milan CNR-ISASI, Naples Hacettepe University, Ankara Boston Children Hospital, USA















MUR

2023-2025

**PRIN 2022** 







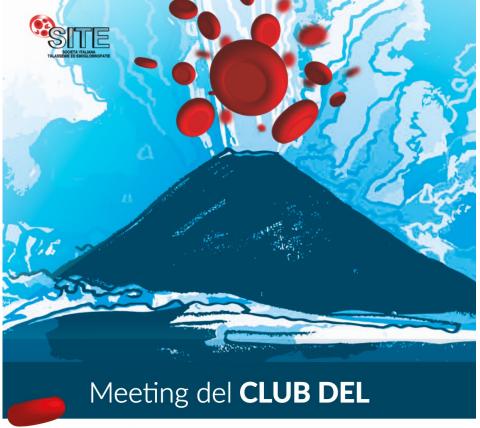


CN3 2022-2025



2023-2025




for rare or low prevalence complex diseases

#### Network

Hematological Diseases (ERN EuroBloodNet)







# ROSSO2026

NAPOLI 28-29 SETTEMBRE 2026 Complesso dei SS. Marcellino e Festo

PRIMO ANNUNCIO